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The paper treats two topics: namely (a) the relation between shear viscosity r l  and bulk viscosity 
L implied by the simplest, one-component plasma, model with some of the essential features to 
describe the liquid alkalis and (b) the incorporation of electron-ion interaction by means of 
another simple model, leading to linear dissipative ionic motion. Thc results of (a) should havc 
potential relevance to experiments especially on Na and K, while (b) should be of interest for 
the lightest liquid alkali metal, Li. 

1 INTRODUCTION 

March and Suhl’ have recently argued that the measurements of shear 
viscosity q in pure isotopes Li6 and Li7 by Ban et al.,’some twenty years ago, 
demonstrate that dynamical interactions between screened ions must play 
a role in determining transport coefficients in light liquid metals. They 
proposed that sound wave attenuation and neutron scattering experiments 
should also reveal depatures from the scaling with isotopic mass that one 
would expect from a conventional theory. 
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242 R.  KARIOTIS A N D  N .  H. MARCH 

In this paper, we pursue further (a) the consequences of a simple model, 
the so-called one-component plasma (OCP), for sound wave attenuation 
and (b) the influence of electron-ion interaction on atomic dynamics. 

Ideally, one would like to start from the OCP model which, as we discuss 
below, has well studied transport properties, and, after investigating this 
fully from the standpoint of sound wave attenuation say, switch on the 
electron-ion interaction. Though statically this procedure leads to good 
results, dynamically there appear to be problems with current approaches 
to atomic transport in liquid metals by this route. Therefore, while not 
directly utilizing the OCP Hamiltonian as starting point, we shall consider 
the role of electron-ion interaction on atomic dynamics, with the objective 
of demonstrating for an explicit, though admittedly oversimplified, Hamil- 
tonian, that single ion motion, in the presence of electron-ion interaction 
such as exists in a liquid metal like Li, can be represented by a conventional 
Newtonian equation of motion, but with a linear dissipative term propor- 
tional to the ionic velocity. The inclusion of such a term in molecular dyna- 
mica1 simulation of the atomic transport coefficients in light liquid metals 
such as Li is therefore proposed, the motivation for doing this being the 
viscosity measurements of Ban et ul.’ already referred to. 

The outline of the paper is as follows. Immediately below, in Section 2, we 
use the thoroughgojng study of the OCP model by Vieillefosse and Hansen3 
to derive a relation between the longitudinal and shear viscosities. This may 
have relevance at least to the heavier liquid alkali metals and, we hope, 
might stimulate further efforts to measure precisely the bulk viscosity in 
these liquids. In this model however, with its unresponsive background of 
uniform neutralizing electronic charge, the atomic transport coefficients 
scale in the appropriate classical manner with atomic mass and therefore one 
cannot explain the results of Ban et u1.’ on the isotopes of Li. This makes it 
imperative for this lightest alkali metal to introduce electron-ion interaction, 
which is indeed known from a variety of evidence to be strong in Li metal. 

Therefore, in Section 3, a suitable model Hamiltonian is introduced, into 
which electron -ion interaction is incorporated from the outset. With this, 
admittedly oversimplified, model Hamiltonian, the formalism of Lindenberg 
and Seshadri4 can be used to derive an explicit equation of motion for an ion. 
Then, in Section 4, by plausible additional assumptions, this equation is recast 
into a form with a linear dissipative term. Section 5 constitutes a brief sum- 
mary, plus proposals for incorporation of a linear dissipative term in mole- 
cular dynamical calculations of atomic transport in light liquid metals. The 
interest in neutron inelastic scattering from suitable light isotopes of liquid 
metals is finally re-emphasized. Though, for self-motion, the two lowest order 
sum rules are not expected to be affected by linear dissipation, it would be 
interesting to plot the deviations of the self-function S,(k, w) from the 
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ATOMIC TRANSPORT I N  LIQUID METALS 243 

simple mass scaling result (cf. Eq. (5.1) below) valid in the absence of velocity 
dependent forces. 

2 RELATION BETWEEN SHEAR AND BULK VISCOSITY IN 
ONE-COMPONENT PLASMA 

By way of motivation, we merely note that for a one-component system the 
dynamical structure factor S(k ,  a), accessible via neutron scattering, the 
Kubo-Green formula’ 

4 3y + i K lim w4 lim k - 4 S ( k ,  w )  
0-0 k - 0  

leads to the combination of bulk viscosity q, and shear viscosity i, which 
enters the interpretation of sound wave attenuation data. There is another, 
closely related Kubo formula for the shear viscosity, but we shall not need it 
directly in the present paper. 

While the experimental situation with respect to the shear viscosity of 
liquid metals as a function of temperature is quite satisfactory, very little 
definitive information is available on the bulk viscosity. 

Therefore, the work of Vieillefosse and Hansen3 on the OCP model has 
considerable potential interest for the alkali metals. In particular, these 
workers give explicit expressions for reduced shear viscosity y* and longi- 
tudinal viscosity b*, related directly to ($y + i) in Eq. (2.1). These quantities 
y* and b* are given explicitly in their Eqs (50) and (63) respectively. All the 
quantities entering these formulae can be attributed direct physical signifi- 
cance within the OCP model, except for the parameter they denote by H ,  . 
This latter quantity, therefore, Vieillefosse and Hansen3 estimate using the 
superposition approximation for the triplet correlation function 9, , which 
enters the expression for H,. 

As these workers demonstrate, at high values of the usual dimensional 
coupling constant r for this OCP model, the individual values of y ~ *  and b* 
are very sensitive to small variations in H,.  Thus, their Table 111 shows that, 
around the critical coupling r - 160 for transition from liquid to crystal, 
q* = 0.14, estimated from use of superposition, could vary with estimated 
uncertainties from 0.25 to 0.11. Similar large variations of b* between 0.31 
and 0.15, around their estimate b* = 0.19 are possible. 

Therefore, the procedure we prefer to adopt below is to forego the possi- 
bility of obtaining fully quantitative estimates of y* and b* individually, which 
will clearly necessitate solving the still somewhat complicated problem of 
transcending the superposition approximation for g 3 ,  and to content our- 
selves with relating b* and y* by eliminating H ,  between their Eqs (50) 
and (63). 
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244 R.  KARIOTIS A N D  N.  H. MARCH 

After some algebra, and use of definitions in the pioneering work,3 we 
find the explicit relation 

3 4 5  + 21, - 15,,} - * 2  {- r - I , }  1. (2.2) 

We note that, in terms of r and the excess of internal energy per particle 
U / N ,  the quantity I ,  is given by 

2 u  
- 3r N k , T  

I (2.3) 

The quantity 7 as usual denotes the ratio of specific heats cp/c,  while d is 
given by 

Motivated by the statement of Vieillefosse and Hansen3 that they find 
b*/q* N $ over the entire range of r by numerical use of their Eqs (50) and 
(63) directly, we have investigated Eq. (2 .2)  above and have found that in 
the limit r tends to infinity, Eq. (2.2) does indeed lead back to b*/q* = 4. 
Of course, near the freezing point of liquid alkali metals, r is - 160 to 200 
and is therefore indeed large. 

Though, as already referred to above, we have now restricted ourselves 
to relating b* and q*, we have next used the numerical studies in Ref. 3 to 
evaluate explicitly this relation. Thus, Figure 1 shows a plot of b* versus y*, 
curves of constant r having been drawn in. Using a value of q* quoted 
above, around 0.2, the spread due to the variation of b* with coupling 
strength r is seen to be relatively small, confirming the main findings of 
Ref. 3, while avoiding the use of superposition. The fact that in Figure 1 the 
curve labelled r = 1 is out of sequence with the others seems to be connected 
with the remark of the authors of Ref. 3 that the isothermal compressibility 
changes sign here. 

It would, of course, be interesting if a satisfactory method could be found 
for handling the dynamics when electron-ion interaction is switched on to 
the above OCP model. However we have not, so far, seen how to proceed 
satisfactorily with that. Below therefore we shall explore another, not 
unrelated, route to the treatment of electron-ion interaction, essential for 
understanding transport in Li, if probably unimportant for Na and K, the 
most ideally free-electron metals for which the OCP model is very 
appropriate. 
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FlGURE 1 
values of the  OCP coupling strength f. 

Reduced longitudinal viscosity b* versus reduced shear viscosity q* for different 

3 HAMILTONIAN OF COUPLED ION-ELECTRON ASSEMBLY 

We consider the motion of an ion of mass M coupled to other ions of the 
same species, and also coupled to the conduction electrons of the metal, to be 
described by the Hamiltonian: 

The Hamiltonian for the ions will be of the general form 
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246 R. KARIOTIS AND N. H. MARCH 

while for the electrons it is convenient to follow a somewhat special approach. 
Normally, the conduction electrons will have a mean square displacement 
D,t, where D, is the diffusion coefficient. It is not our intention here to 
evaluate D,, but rather to demonstrate that it separates into an electron-ion 
part and a contribution due to self-diffusion (and similarly for ionic diffusion). 
Therefore, we adopt the following simplification of treating the electrons as 
harmonic oscillators: 

N 

H e  = t m  C ( j f  + w,2yf). (3.3) 
i =  1 

In the limit o, tends to zero, our results should yield the free-electron limit. 
In conjunction with this approximation, it will turn out to be useful to 
approximate the ion-electron interaction by the expression 

The usefulness of this form is that in the limit wi -+ 0, yi j  -+ 0, subject to the 
restriction that yij/w, is finite, we can obtain the desired separation of the 
diffusion coefficient into its two contributions. 

Given the above choice of Hamiltonian, consider the equation of motion 
of a single ion, denoted x(t), and the oscillators to which it is coupled: 

(3.5) 

i:, + w;y, + ynx(M/mn)”2 = 0. (3.6) 
The y ,  coordinates refer to all the degrees of freedom to which the “tagged” 
ion is coupled according to the bilinear form given in Eq. (3.4). In principle, 
this may be used to represent not only the electronic background, but also 
that of the other ions in the system. 

Following Lindenberg and S e ~ h a d r i , ~  these equations can be combined 
to yield the equation of motion for the ion in the presence of the background 
oscillators: 

N 1: av  N MX + - + 1 (Mm,)”2y,y~o’(t) + 1 My: ds G,(t - S)X(S) = 0. (3.7) 
ax n = l  n =  1 

In Eq. (3.7), yko’(t) is the homogeneous solution to  the equation of motion 
for the nth background oscillator, while G, is the appropriate Green function. 
Explicitly, these are: 

4 ‘ O ’  y!,O)(t) = qko) cos w,t + - sin w,t 
o n  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ATOMIC TRANSPORT IN LIQUID METALS 247 

With the aim of expressing the ionic motion in a manner that displays the 
dissipative contribution, it is convenient to define the kernel 

d 
ds s) = ~ F,(t - s). (3.10) 

Then, if  we integrate by parts, the new form for the equation of motion for 
the tagged ion may be expressed as: 

N 

Mx + + [ M y 3 3 9 ] x ( t )  - 1 y,2M S,’ds F,(t - s)i(s) 
n =  1 n =  1 

r~ 1 

In Eq. (3.11),f(t) and F,(t) are given by: 
N 

f(t> = 2 Y, o’(t)(Mm)”2yn 
n =  1 

1 
F,(t) = - 7 [exp(io,t) -t 

2un 

(3.1 1) 

(3.12) 

exp( - iu, t ) ] .  (3.13) 

All this follows without approximation, from the choice of model Hamil- 
tonian in Eqs (3.1) and (3.4). Before proceeding further, two comments 
should be made. First, had the equation of motion for y, contained non- 
linear terms, we would have had to construct a perturbative solution for 
y,(t) involving convolutions over powers of G,(T).  Rewriting G, in terms of 
F ,  would add non-linear dissipation terms to the equation for x(t). In 
principle such contributions will be present, but will not alter our con- 
clusions concerning the coefficient of the linear dissipation term. 

Secondly, we see that there is a “renormalization” of the oscillator 
frequency for x, and from this we conclude that the harmonic oscillator 
model which we have chosen is likely to be less restrictive than might appear 
at first sight. This contribution is in the form of a sum over terms like F,(O). 

4 MARKOVIAN ASSUMPTION A N 5  LINEAR DISSIPATION 

To move from the above formalism to some specific results which can be 
interpreted directly, it is necessary to invoke some plausible approximations. 
Central to the treatment below is the Markov assumption. This will motivate 
then a number of approximations which are made in order to allow an 
explicit determination of the resulting correlation functions. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



248 R.  KARIOTIS AND N. H. MARCH 

The Markov approximation appears directly through the requirement 
that the effective “external” source be delta correlated: 

(f(t>f(t’>> = COW - 0. (4.1 ) 

A reasonable starting point in achieving this form is to take the initial phase 
coordinates of the set {qLo), cjlp)} to be determined by the canonical distri- 
bution : 

From this, we have: 

Therefore, if we take 11,’ proportional to w:, say y,’ = D,a;, then 
N 

( f ( t ) f ( t ’ ) )  = Do k,  T 1 COS[CO,(~ - t’)]. (4.4) 
n =  1 

In the limit of large N and assuming that the on are uniformly spaced, we 
have the desired result 

( f ’ ( t ) f ( t ’ ) )  = Dok,TMG(t - t’). 

The sum over n is a sum over all background oscillators, so if this set is 
divided into ions and electrons, it is clear that there are two components to 
the correlation function for f ( t ) :  

( f ( t > f ( t ‘ > )  = (D.9 + D,,)Mk, T W  - t’). (4.5) 

The first contribution is the self-part, or ion-ion interaction ; the second con- 
tribution is due to the ion-electron interaction. 

4.1 Consequence of fluctuation-dissipation theorem 

We next note that the nature of the fluctuation-dissipation theorem is that 
any assumption about the additive noise necessarily determines the multi- 
plicative noise also. Inspection of Eq. (3.1 1) indicates that, having determined 
the statistical properties of f ( t ) ,  we are also in a position to simplify the 
coefficients of x(t) and i ( s )  as well. The new equation of motion is: 

av 
ax 

M 2  + - + Q’x(t) + bi(2) =f(t)  (4.6) 

which has been arrived at by putting 
.Y . ,2  

n = l  Wn 
a Z =  C M % = N D , M  (4.7) 
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and by making the assumption 
N 2  

M 4 cos[on(t - t‘)] = b6(t - t ‘ )  
n=l o n  

The term proportional to x(0) in Eq. (3.11) can be omitted since the initial 
position of the ion can be taken to be zero when averaged. By the fluctuation- 
dissipation theorem, it follows that : 

b = DoM. (4.9) 

If we therefore simply consider the equation of motion 

MX -t b i  + Q’X = f ( t )  (4.10) 

then the solution is readily expressed in terms of the Green function and the 
external source as: 

x ( t )  = ds Go(t - s ) ~ ( s )  (4.1 1) s: 
where 

(4.12) 1 
a1 - a 2  

G,(T) =- Cexp(a1z) - exp(a2 T I 1  

and a,  and a2 are given by: 

a ,  = - b + +(h2 - 4 Q y  B + (B2 - Q 2 ) 1 / 2  
2 

b 
2 

(4.13) 

i(b2 - 402)1/2 B - (B2  - Q 2 ) 1 I 2  
a 2 =  - - -  

with B = -b/2. From Eq. (4.11) we can calculate the correlation function 
for x(t) in the long time limit : 

k,T - k,T 
2 N D , M -  2N M 

( x ( t ) x ( t ) )  = ___ - __ - (4.14) 

In this expression, we have redefined the proportionality constant given 
earlier: 

(4.15) 

The nature of this definition should be clear if it is interpreted as an effective 
mean free lifetime z. Of course, it would be more appropriate to have T 

depend on n, for example: 
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250 R. KARTOTIS AND N. H. MARCH 

which would lead to exponentially correlated additive noise. Further 
elaboration is possible, the main observation being that the manipulations 
given above can be used as a reasonable starting point for investigating the 
dissipative effect of coupling the electron system to the ions. 

The separation of Do into an ion-ion and an ion-electron part: 

(4.16) 

is an important refinement on which computer simulation may yield useful 
information, since our model does not give a basis for determining the ratio 
-yn/w,. At low temperatures, quantum effects, absent in this calculation, will 
be significant and the mean free lifetime of the particles will diverge. At high 
temperatures, the mean lifetime has a different dependence on T ;  therefore 
a purely mechanical choice for ?,,/con is not sufficient, but can act only as a 
guide for a given temperature regime. 

5 SUMMARY AND PROPOSALS FOR FURTHER WORK 

The main achievements of the present work can be summarized as follows. 
First, for Na and K, the predictions of Figure 1 for r - 160 are relevant. 
b*/q* can be marginally less than 4/3 in the relevant range of ‘I*. As stressed 
in Ref. 3,t however, the conclusion from the study is that [ makes only a 
small contribution to sound wave attenuation for these simple, free-electron, 
metals. Mass scaling in this treatment is as in conventional classical theory, 
and therefore this model cannot suffice for the correct treatment of atomic 
transport in liquid Li6 and Li7. 

The further achievement of the paper is then to demonstrate that, for the 
admittedly simple model Hamiltonian summarized by Eqs (3.1)-(3.4), 
electron-ion interaction can be, essentially, subsumed into a rather simple 
equation of motion for the tagged ion with (a) a modified conventional 
force field, which we might liken to “static electron screening” of bare ions, 
and (b) a linear dissipative term proportional to  the ionic velocity. 

Of course, it is true that the electrons in a liquid metal just above its melting 
point form a completely degenerate electron gas. However, because of the 
close similarities between assemblies of harmonic oscillators treated classi- 
cally or quantum mechanically, we do not expect our main conclusions to 
be altered by quantum mechanics, within our Drude-like modelling of the 
electrons. Furthermore, of course, our work should be viewed within the 

t Presumably the Gaussian approximation made in this reference for the memory function 
is responsible for the non-physical h*/q* 5 4/3. 
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context of the usual treatment, say by molecular dynamical computer 
simulations, of ionic dynamics based on effective ion- ion pair interactions. 
Naturally these “static” pair interactions are mediated by the electrons and 
must be calculated by treating the electrons quantum mechanically.’ But 
over and above these effective static forces, the additional dissipative term 
arising from electron ion interaction must modify the scaling property 
noted by Brown and March,6 namely 

S,(k,  0) = M”2f(k,  wM’ ‘2) (5.1) 

I t  will, we believe, be interesting, with reasonable choices of the linear 
dissipative constant b, as motivated by the present work, to calculate the 
self-diffusion constant D in pure Li6 and pure Li7, D being related by the 
Kubo-Green formula (cf. Eq. (2.1) for sound wave attenuation) 

D 
- = lim w2 lim k -  ’S,(k, w )  (5.2) 

10-0 k-0 

to the self function S,. Of course, the complete self-function S,(k,  o) for two 
isotopes, for varying values of b, will be of some interest too. 

But returning to the starting point of the present work, experimental data 
on the shear viscosity y for pure Li6 and pure Li7 is already available as a 
function of temperature.2 Molecular dynamical simulation of y, including 
linear dissipation, seems therefore the first priority. We must emphasize that 
while, at first, it would seem sensible to work simply with one constant b, the 
work of McCaskill and March’ relates dynamic interactions between 
screened ions to the sharpness of the Fermi surface. In a liquid metal, the 
Heisenberg Uncertainty Principle links the degree of Fermi surface blurring 
to the electronic mean free path. This would mean that velocity dependent 
terms in the ionic equations of motion could have a magnitude dependent 
on the electronic mean free path and therefore temperature dependent. 

In conclusion, the present work on electron-ion interaction, though based 
on a simple model Hamiltonian, can leave little doubt that it will not be 
possible to treat atomic transport in liquid metals in a fully correct manner 
with the customary “static” effective ion-ion interactions. We expect, how- 
ever, that the effects discussed in the present paper will only be of quantitative 
importance for really light liquid metals. Li is already of considerable interest: 
Be would be potentially also a metal worthy of careful study, but its toxicity 
means that little experimental information is available. Mg and A1 are 
outside candidates to study experimentally. Overall, and following the 
pattern already evident from experiments on Li, measurements on different 
isotopes of the same light liquid metal seem the most promising, experiments 
in the present context embracing molecular dynamical simulation. 
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